James Rusak

James Rusak's picture
Scientist & Group Leader - Water Chemistry
Ontario Ministry of the Environment, Conservation and Parks
(705) 766-0659


Current Research Opportunities

Shelley Arnott and I are accepting applications for two PhD positions to tackle some of the biggest threats facing aquatic ecosystems today - largely using existing monitoring datasets - come join us! 

Current Research Interests

Long-term Aquatic Ecosystem Research

Long-term ecological and environmental data represent one of the keys to understanding many, if not most, of the multiple stressors currently impacting aquatic ecosystems. My research uses biological (from phytoplankton to fish) as well as physical and chemical long-term and large-scale monitoring data to...

  • improve the early detection of environmental problems
  • understand ecosystem responses to multiple stressors
  • investigate interactions and feedbacks in aquatic systems

Understanding Variability

Another aspect of my research focuses on understanding the interactions and feedbacks between a lake's biology and its physical and chemical attributes as well as the environmental context in which it is embedded. One way to understand biological patterns and processes are via an examination of their spatial and temporal variability - a fundamental property of nature and one that is interdisciplinary in its scope. Ultimately, incorporating variability will improve our attempts to monitor, manage, and understand aquatic ecosystems. I combine experimental studies, paleoecology, and long-term monitoring to...

  • quantify baseline variabilty
  • predict the response of variability to disturbance events
  • develop variance-based metrics to detect and predict environmental change

Automated Sensing of Lakes

We are currently developing Dorset’s capacity for acquiring automated high-frequency monitoring data in Muskoka area lakes and elsewhere. These data offer insight into processes occurring over short periods of time (minutes to hours) and can be used to investigate a variety of phenomena in lakes, such as...

  • lake turnover, stratification and internal mixing dynamics
  • nutrient loading
  • oxygen depletion and lake metabolism
  • carbon cycling

Current Projects

GEISHA (Global Evaluation of the Impacts of Storms on freshwater Habitat and structure of phytoplankton Assemblages) 

Storms are expected to become more intense and more common as a result of climate change. Because storms influence environmental characteristics of lakes important to phytoplankton (e.g., temperature, light, and nutrients), storms may represent significant environmental disturbances which could alter phytoplankton niche-space and thus community dynamics. However, our understanding of linkages among storms, lake physics, phytoplankton traits and ecosystem function is limited. The international collaboration, GEISHA, is conducting analyses on traditional long-term and novel high-frequency datasets from lakes across the globe to better understand the patterns, mechanisms, and ecological implications of storms on phytoplankton communities. 

The Canadian Lake Pulse Network

This NSERC-funded Strategic Network will assess lake health across the country, developing better metrics to quantify ecosystem function and using the past and present to develop future scenarios of change in aquatic ecosystem in different ecoregions. The network is focussed on addressing 4 major themes:

  • Where, by how much and why have Canadian lakes changed during the Anthropocene?
  • How do taxonomic, molecular and biochemical features of planktonic, benthic and microbial communities change with lake alteration and which ones can most effectively be used as indicators of the health of Canadian lakes?
  • What are the optical, morphometric and watershed properties of Canadian lakes that can be applied to “scale up” assessments of health to groups of lakes through remote sensing and spatial modelling approaches?
  • How will lake ecosystems and their services respond to different scenarios of environmental change?

Sensing the America's Freshwater Ecosystem Risk (SAFER) from climate change

The connections between climate change/variability and threats to aquatic ecosystems are poorly understood and difficult to assess because they depend on regional responses to both global and local factors. Furthermore, because the value of ecosystems services will also vary regionally, assessing (and mitigating) these threats will require a multi-disciplinary approach - one that addresses scientific, socioeconomic and cultural aspects - in a tightly coupled natural-human system. As such, SAFER's objectives are to:

  • employ freshwater ecosystems as "sentinels"or "sensors" of climate variability and watershed processes and investigate their interaction with other multiple stressors to assess risks to ecosystem services across the Americas, and
  • determine management and mitigation strategies which are both technically and economically feasible as well as culturally acceptable.

Current Appointments

Past Appointments

  • Co-chair of the GLEON Collaborative Climate Committee (2012-2015)
  • Member of the GLEON Steering Committee (2013-2014)
  • Vice President (anglophone) of the Society of Canadian Limnologists (2010-2012)

Education and Research Experience

  • B.Sc., Marine Biology, University of Guelph, Guelph, ON, Canada.
  • M.Sc., Biology, Lakehead University, Thunder Bay, ON, Canada.
  • Ph.D., Biology, York University, Toronto, ON, Canada.
  • Postdoctoral Fellow, Limnology Laboratory, University of Regina, Regina, SK, Canada.
  • Research Scientist / NTL-LTER Site Manager, Center for Limnology - Trout Lake Station, University of Wisconsin - Madison, Boulder Junction, WI, USA